
PRELIMINARY NOTE

Pyridine N-oxide-ethylenedichloropalladium(II) complexes

Although a large number of pyridine N-oxide-olefindichloroplatinum(II) complexes have been prepared¹, synthesis of the corresponding palladium complexes has not previously been reported. Palladium-monoolefin- π complexes are believed to be thermodynamically and kinetically less stable than platinum ones², and there is a paucity of such examples. The existence of palladium-olefin complexes as transient intermediates in a variety of industrial processes^{3,4} and in palladium(II) catalyzed olefin isomerizations⁵ has frequently been suggested, but actual isolation and identification of these olefin-metal intermediates has not been accomplished. To investigate these olefin-Pd^{II} reactions, we feel it necessary that some experimentation be with actual monoolefin-palladium(II), square-planar- π complexes as initial reactants. In conjunction with this study we found it desirous to prepare an original series of Pd^{II}-ethylene complexes, and we now wish to report a synthesis of 1,3-di-chloro-2-ethylene-4 (p-Z-pyridine N-oxide)-palladium(II) complexes. (Z=nitro, methoxy or methyl)

After a great deal of trial-and-error experimentation the following procedure for the preparation of the complexes was developed—as described for *p*-picoline N-oxide. A mixture of slightly soluble ethylene palladium chloride⁶, $(C_2H_4PdCl_2)_2$, (0.5 mmole) and dichloromethane (10 ml) was stirred under a blanket of ethylene (ice-water-bath cooling). The *p*-picoline N-oxide (1 mmole in 3 ml of CH₂Cl₂) was fed slowly (~5 min) from a syringe to the stirred mixture. As the N-oxide was added, the solid ethylene dimer dissolved, and near the endpoint of addition a clear, redbrown solution existed. After several more minutes of stirring, pentane (50 ml) was added, and a solid precipitated. The supernatant liquid was syringed off, and the solid residue was washed thoroughly with pentane (under ethylene). The solid was then blown dry with ethylene, yielding a golden brown powder, I.

Compound I (m.p. (dec.), 96–98°) was identified in the following manner: infrared analysis showed picoline N-oxide absorptions characteristic of bonded ligand rather than free N-oxide [compared with spectra of free N-oxide, mixture of N-oxide and ethylene dimer, and picoline N-oxide–ethylenedichloroplatinum(II)]. In fact, the IR spectrum was very similar to that of the platinum analog. Treatment of a solution of I in a gasometric apparatus with excess triphenylphosphine resulted in the liberation of ethylene (94% based on 1-to-1 ethylene-to-palladium). Reaction of I with water produced palladium and acetaldehyde (67% isolated as the 2,4-dinitrophenylhydrazone; identified by comparison with an authentic sample). Preparative procedure required one mole of picoline N-oxide per mole of palladium (Found :

J. Organometal. Chem., 10 (1967) P19-P20

Pd, 32.4; Cl, 22.7. $C_8H_{11}Cl_2NOPd$ calcd.: Pd, 33.9; Cl, 22.6). This information together with prior knowledge of the reaction of *p*-picoline N-oxide with ethyleneplatinum chloride⁷ strongly suggests the proposed structure for compound I.

A molecular weight value of 350 (freezing point method in benzene; determination difficult due to low solubility and poor stability of product; calcd.; 315) eliminates species such as an adduct comprised of 2 moles of N-oxide and 1 mole of ethylenepalladium dimer. Treatment of a solution of I in CH_2Cl_2 with one equivalent of ligand (N-oxide) results in displacement of ethylene and the formation of a brown precipitate. The solid formed is identical to the product of the reaction of dibenzonitrile palladous chloride with excess *p*-picoline N-oxide in acetone [believed to be bis(*p*-picoline N-oxide)-dichloropalladium(II)].

Using the described preparative procedure the *p*-nitropyridine N-oxide (m.p. (dec.), $123-125^{\circ}$), *p*-methoxypyridine N-oxide (m.p. (dec.), $105-107^{\circ}$), and pyridine N-oxide (m.p. (dec.), $107-109^{\circ}$) complexes were also prepared. At present no purification procedure for these complexes has been developed. Difficulty with decomposition has been encountered in all attempts. The complexes are golden-brown, dissolve in CH₂Cl₂ or sparingly in benzene, and tend to decompose slowly on standing at room temperature, even under ethylene. Considerable decomposition is apparent after several days. The *p*-nitropyridine N-oxide complex appears to be the most stable.

Additional applications of this synthetic route are presently being investigated. We are also undertaking a study of the reactivity of these complexes to ascertain, for example, if higher olefin or carbon monoxide⁸ will exchange with the ethylene.

Acknowledgement

This work was supported by The College Center of the Finger Lakes and the Research Corporation.

Department of Chemistry, Ithaca College Ithaca, New York (U.S.A.) WILLIAM H. CLEMENT

```
1 S. I. SHUPACK AND M. ORCHIN, J. Am. Chem. Soc., 86 (1964) 586.
```

- 2 F. A. COTTON AND G. WILKINSON, Advanced Inorganic Chemistry, Interscience, New York, 1962, p. 852.
- 3 P. M. HENRY, J. Am. Chem. Soc., 86 (1964) 3246 and refs. cited therein.
- 4 A. AQUILO, Advan. Organometal. Chem., 5 (1967) 324, and refs. cited therein.
- 5 R. CRAMER AND R. V. LINDSEY, J. Am. Chem. Soc., 88 (1966) 3534 and refs. cited therein.
- 6 M. S. KHARASH, R. C. SEYLER AND F. R. MAYO, J. Am. Chem. Soc., 60 (1938) 882.
- 7 S. I. SHUPACK AND M. ORCHIN, J. Am. Chem. Soc., 85 (1962) 902.
- 8 W. H. CLEMENT AND M. ORCHIN, J. Organometal. Chem., 3 (1965) 98.

J. Organometal. Chem., 10 (1967) P19-P20